Принципы работы системы автофокуса

Фокусировка – больной вопрос для большинства фотолюбителей (да и профессионалов тоже). Поверьте, или проверьте: любой фотографический форум убедит Вас, а тесты фотоаппаратов обязательно содержат раздел, посвященный исключительно работе автофокуса.

Обсуждения же автофокуса на фотографических форумах чаще всего заканчиваются взаимными обвинениями в невежестве или виртуальным хватанием за лацканы пиджака с криками «А ты кто такой?!». Подумалось мне заняться самообразованием и разобраться — на бытовом уровне, как работает автофокус в современных цифровых фотоаппаратах. Оказалось, что материалов в сети очень немного, а понятных человеку без специального образования – еще меньше. Результаты поисков и компилирование информации (спасибо ЛензРенталз!) изложены ниже.

В современных цифровых фотоаппаратах используются две системы автофокуса: контрастный автофокус и фазовый автофокус. Давайте начнем с более простой (и менее распространенной в «зеркалках») системы автофокуса: контрастного автофокуса.

Контрастный автофокус

Контрастный автофокус работает следующим образом: процессор оценивает гистограмму, получаемую с матрицы фотоаппарата, немного перемещает линзы объектива – смещая точку фокусировки, затем производит переоценку, чтобы увидеть, повысился или снизился контраст. Если контраст повысился, фотоаппарат продолжает смещать точку фокусировки в выбранном направлении, пока изображение не станет максимально контрастным. Если же контраст снизился, объективу дается указание смещать точку фокусировки в другую сторону. Процесс повторяется до достижения максимального контраста (что по существу означает продвижение точки фокусировки чуть дальше положения максимального контраста и возврат к точке, после которой контраст начал снижаться). «Сфокусированное» методом контрастного автофокуса изображение – это изображение с максимальным контрастом.

Если ваша камера показывает гистограмму в режиме Live View можно вручную фокусироваться по контрасту.

При контрастном автофокусе оценивается изображение с небольшого участка матрицы – используемого в качестве датчика и совпадающего с точкой фокусировки, выбранной фотографом. Это позволяет выбрать объект, на котором нужно сфокусироваться, и избавляет процессор фотоаппарата от необходимости оценивать контраст всего изображения – оценивается контраст только в выбранных точках автофокусировки.

Недостатки контрастного автофокуса

Основным недостатком контрастного автофокуса является его неторопливость. Многоходовый процесс «сдвиг точки фокусировки/линз объектива – оценка – сдвиг – оценка» требует времени, да и фотоаппарат может начать с перемещения точки фокусировки в неправильном направлении – потом нужно будет возвращаться. Из-за крайне невысокой скорости и невозможности следящей фокусировки, контрастный автофокус мало подходит для динамичных сюжетов. Медлительность усложняет даже съемку неподвижных объектов. Контрастный автофокус значительно более чем фазовый зависит от хорошего освещения, да и — что очевидно — требует хорошей контрастности объекта, на котором производится фокусировка.

Преимущества контрастного автофокуса

Есть у контрастного автофокуса и преимущества, благодаря которым он не только до сих пор используется в фотоаппаратах, но и увеличивает свое присутствие. Во-первых, система контрастного автофокуса проще. Она не требует дополнительных датчиков и микросхем, которые нужны для фазового автофокуса. Простота снижает стоимость и (а для многих цена важнее скорости) является основной причиной использования контрастного автофокуса в компактных цифровых фотоаппаратах. (Другая причина состоит в том, что глубина резкости у компактных фотоаппаратов изначально больше и требования к точности автофокуса существенно ниже).

Простота системы контрастного автофокуса уменьшает ее размер. Например, появившиеся недавно беззеркальные цифровые фотоаппараты со сменной оптикой стремятся к миниатюрности, а система контрастного автофокуса не требует «отводить» изображение в сторону от матрицы фотоаппарата: значит не нужны призмы, зеркала и линзы, необходимые для системы фазового автофокуса. Миниатюрность — одно из важнейших преимуществ беззеркальных фотоаппаратов со сменной оптикой — все они используют контрастный автофокус.

Второе преимущество состоит в том, что в системе контрастного автофокуса используется матрица фотоаппарата. Нет необходимости «отвода» пучка света через специальные призмы и зеркала на дополнительные датчики, которые могут быть неотюстированы по отношению к матрице фотоаппарата. При контрастной автофокусировке оценивается реальное изображение на матрице фотоаппарата, а не отдельное изображение, которое должно быть (а «должен» еще не значит, что так и есть) точно выверено на соответствие с матрицей.

Именно по этой причине контрастный автофокус обеспечивает более точную автофокусировку, чем фазовый. Подчеркну: «при использовании матрицы для контрастной фокусировки». В зеркальных фотоаппаратах Olympus и Sony для контрастного автофокуса в режиме Live View используется дополнительная, меньшая матрица, а значит — как и в любой системе, требующей юстировки — остается возможность неправильной юстировки.

В целом, система контрастного автофокуса проще, дешевле, меньше по размерам, и теоретически более точна, чем фазовый автофокус. Но она намного медленнее. Производители прилагают все усилия, чтобы ускорить контрастный автофокус, есть успехи, но в ближайшем будущем он будет оставаться более медленным.

Принцип работы фазового автофокуса
Рис. 1 Принцип работы фазового автофокуса

Фазовый автофокус

Основные принципы

Систему фазового автофокуса (также известного как phase matching) предложила фирма Honeywell в 1970-х годах; впервые серийно ее использовали в фотоаппарате Minolta Maxxum 7000. Honeywell подала на Minolta иск за нарушение патентых прав и выиграла дело; так что производителям пришлось заплатить Honeywell за право использовать фазовую систему автофокуса.

Фазовый автофокус основан на принципе, согласно которому, исходящие/отраженные от точки, находящейся в фокусе, лучи будут в равной степени освещать противоположные стороны объектива («будут находиться в фазе»). Если объектив сфокусирован перед или позади этой точки, эти лучи света по-разному проходят через края объектива («находятся не в фазе»).

Большинство существующих систем фазового автофокуса используют зеркала, линзы или призмы (разделители пучка), чтобы разделить лучи, проходящие через противоположные края объектива на два луча; и вторичную систему линз, чтобы снова сфокусировать эти лучи на датчике автофокуса (как правило, CCD). Этот датчик определяет, куда падают лучи света проходящие через противоположные края объектива. Если точка находится в фокусе, лучи попадают на датчик на определенном расстоянии друг от друга. Если объектив сфокусирован ближе или дальше требуемой точки, расстояние между этими лучами будет меньше или больше. Много слов, давайте попробуем посмотреть на графическое отображение процесса — (рис. 1).

Сразу оговорюсь: описание и рисунок дают очень упрощенное объяснение принципа работы фазового автофокуса – для того лишь, чтобы получить представление о том, «как это работает». Физика и механика процесса, описание которых заняло бы не одну страницу, полную формул, цифр и других непонятностей, остались «за кадром».

На рисунке ясно видно, что процессор фотоаппарата в системе фазового автофокуса сразу определяет, сфокусирован объектив слишком близко или слишком далеко от объекта, так что один из недостатков контрастного автофокуса (камера не знает, в какую сторону смещать точку фокусировки) изначально отсутствует — вместо перемещения вперед и назад и определения в каком направлении лежит большая контрастность, в фазовом автофокусе процессор сразу видит, в какую сторону смещать точку фокусировки.

А дальше идет процесс. Каждый автофокусный объектив оснащен микропроцессором, сообщающим фотоаппарату о своем присутствии и состоянии, например, «Я объектив 50/1.4 и мой фокусирующий элемент находится в положении на 20% ближе, чем бесконечность» — или нечто подобное. Когда Вы нажимаете на кнопку затвора наполовину, происходит следующее:

  • Фотоаппарат считывает данные с датчика автофокуса, сверяется с массивом данных, содержащих сведения о свойствах автофокусных объективов этого производителя, делает некоторые расчеты и говорит объективу что-то вроде «Передвинь точку автофокуса вот настолько к бесконечности».
  • В объективе есть датчики и микросхемы, измеряющие либо количество тока, поданного на моторчик фокусировки, либо насколько передвинулся фокусирующий элемент. Объектив смещает фокусировочный элемент и посылает сигнал фотоаппарату «почти у цели».
  • Фотоаппарат перепроверяет данные с датчиков автофокуса, и отправляет сигнал объективу к более точной настройке; процесс точной фокусировки может повторяться несколько раз, пока объектив не сфокусируется «точно в цель». Если что-то идет не так, происходит печально известное «рысканье» объектива.
  • После фокусирования, фотоаппарат приказывает объективу зафиксировать фокус, и информирует фотографа (звуком и индикатором в видоискателе). Весь процесс занимает толику секунды. Очень быстро.
Схема фазового автофокусаРис. 2 Схема фазового автофокуса

Схема фазового автофокуса

Датчик автофокуса не может находиться перед матрицей, поэтому производители используют частично прозрачные области в зеркале, пропускающие свет на вторичное зеркало, от которого он и отражается на датчик автофокуса (рис. 2).

Обычно датчик автофокуса располагается под основным зеркалом (рис. 3) вместе с датчиками экспозамера. Красной стрелкой показан датчик автофокуса фотоаппарата Canon EOS 5D. Изображение взято с сайта Canon, USA

Расположение датчика автофокуса
Рис. 3 Расположение датчика автофокуса
Крестообразный датчик автофокуса
Рис. 4 Крестообразный датчик автофокуса

Типы датчиков фазового автофокуса

Каждый датчик способен оценить лишь небольшую часть изображения. Горизонтальные датчики точнее работают с вертикальными деталями. В большинстве изображений вертикальные детали преобладают, поэтому горизонтальных датчиков больше. Есть и вертикальные датчики, как правило, расположенные крестообразно с горизонтальными (рис. 4). Некоторые фотоаппараты оборудованы даже диагональными датчиками фазового автофокуса.

Некоторые датчики автофокуса (почти всегда располагаются в центре), с помощью различных линз и размера самого датчика, достигают большей точности автофокуса, особенно при использовании светосильных объективов. Чаще всего они включаются в работу только при использовании объективов со светосилой f/2.8 или светлее. На рисунке 4, например, показано, что при использовании объектива f/2.8 будет использоваться крестообразный датчик, а для более темных объективов будет задействован лишь один менее точный датчик автофокуса.

В первых системах фазового автофокуса (и в некоторых современных фотоаппаратах среднего формата) был только один датчик в центре изображения. С ростом вычислительной мощности и инженерного мастерства добавлялись все новые и новые датчики. Сейчас у большинства фотоаппаратов их от семи/девяти и до 52. Можно – в зависимости от требований снимаемой сцены — выбрать один, все, или группу датчиков. Можно сообщить фотоаппарату какой датчик/датчики использовать.

Многочисленные датчики фазового автофокуса, совместно с процессором фотоаппарата, способны на замечательные вещи. Определяя, в каких датчиках движущийся объект находится в фокусе и как это изменяется – измеряя перемещение объекта и считывая показания через кратчайшие промежутки времени – фотоаппарат может предсказывать, где будет находиться движущийся объект через определенный промежуток времени. На этом основана работа следящего автофокуса.

Об автофокусе простыми словами

Влияние светосилы объектива

Независимо от типа датчика, автофокус будет более точным при использовании светосильных объективов. В процессе фокусировки фотоаппарат максимально открывает объектив, закрывая диафрагму до выбранного вами значения только в момент открытия шторок. Фазовый автофокус тем точнее, чем шире угол лучей света. На приведенной схеме угол лучей, полученных от объектива f/2.8 (синие линии), будет больше, чем от объектива f/4 (красные линии), которые в свою очередь больше, чем от объектива f/5.6 (желтые линии). При использовании объектива с максимальной диафрагмой f/8, только самые точные датчики способны работать, но фокусировка будет медленной и менее точной. Именно по этой причине прекращают автофокусироваться объективы f/5.6, когда мы пытаемся использовать телеконвертер, снижающий их максимальную светосилу до f/8 или f/11.

Преимущества фазового автофокуса

Основные преимущества фазового автофокуса мы уже упомянули:

  • он много быстрее контрастного — достаточно быстр для съемки движущихся объектов.
  • Фотоаппарат способен использовать группу датчиков для оценки движения объекта, что дает нам следящий/предикативный автофокус.

Есть и менее явные преимущества. Группы датчиков фазового автофокуса могут использоваться для «электронного ГРИП » – предварительной оценки глубины резкости. Некоторые фотоаппараты (правда, их немного) оснащены функцией автофокусной ловушки (trap autofocus) – они делают снимок в момент, когда что-то попадает в активную точку фокусировки. Если датчики обнаруживают движение в статической сцене, они могут сообщить о недопустимом шевелении фотоаппарата. Но – основное — скорость и следящий автофокус

Недостатки следящего автофокуса

Во-первых, система фазового автофокуса требует физической юстировки. Путь света к матрице фотоаппарата должен быть согласован с путем света к датчику автофокуса так, чтобы предмет, находящийся в фокусе на датчике автофокусировки был в фокусе и на матрице. Каждый объектив должен содержать микросхему, обеспечивающую обратную связь с фотоаппаратом и сообщающую ему информацию о точном положении фокусирующего элемента, о том, на какое расстояние элемент перемещается при подаче определенного тока на моторчик автофокуса. Все это должно быть точно согласовано и выверено таким образом, чтобы объектив смещал точку фокусировки именно туда, куда ему указал фотоаппарат, а фотоаппарат знал точное положение этой точки. Малейшая несогласованность приводит к неточной фокусировке.

Во-вторых, система требует программной настройки. Каждый фотоаппарат и объектив программируются производителем, в память вносится большое количество данных. Благодаря этим данным обеспечивается согласованная работа фотоаппарата и объектива, а точность автофокуса иногда может быть улучшена путем обновления прошивок. Такие обновления часто выпускаются вслед за появлением новых объективов.

Производители скрывают алгоритмы работы своих систем фазового автофокуса. Сторонние производители объективов вынуждены экспериментальным путем считывать и декодировать сигналы, которыми обмениваются фотоаппарат и объектив и на основе этих данных разрабатывать свои микропроцессоры и свои алгоритмы. Из-за этого точность автофокуса при использовании объективов сторонних производителей может быть ниже. Изменение алгоритмов производителями фотоаппаратов приводит к тому, что автофокус на объективах сторонних производителей отказывается работать (их нужно перепрограммировать, как недавно произошло с Sigma AF 120-300/2.8 и Nikon D3X).

Как уже упоминалось, светосила объектива влияет на точность фазового автофокуса. Светосильные объективы способны фокусироваться в более сложных условиях. Обычно зависимость от светосилы не вызывает проблем, потому что у темных объективов большая глубина резкости. Однако, есть значения максимальной светосилы (как правило, f/5.6 или f/8), когда фазовый автофокус просто отказывается работать. (Помните, речь идет о максимальной светосиле объектива — фотоаппарат автоматически полностью открывает диафрагму объектива в процессе фокусировки, поэтому установленное значение не оказывает влияние на автофокус, если максимальная диафрагма объектива соответствует возможностям фотоаппарата).

Поскольку свет попадает на датчики автофокуса только когда зеркало опущено, они перестают работать в момент снимка, и не начинают работать до того, пока зеркало не вернется в исходное положение. Именно поэтому фазовый автофокус не работает в режиме Live View, а следящий автофокус может ошибаться при серийной съемке.

Есть и другие проблемки, которые мы не замечаем. Линейные поляризационные фильтры мешают фазовому автофокусу. Линейных поляриков сейчас осталось немного, но бывает, что купив его «по-дешевке» владелец потом удивляется неточности автофокуса. Фазовый автофокус может просто «сдуться» на некоторых сюжетах (типа шахматной доски или решетки), а контрастный легко справляется с ними.

Live View:

Я выделил режим Live View, потому что именно он заставляет производителей работать над усовершенствованием контрастного автофокуса и над созданием гибридных систем. Как уже упоминалось, контрастный автофокус обладает определенными преимуществами, а преодоление его ограничений будет на пользу всем фотографирующим.

Olympus и Sony уже создали системы, которые разделяют пучок света, отправляя часть в видоискатель, а часть – на дополнительный датчик изображения. Такая система позволяет пользоваться фазовым автофокусом даже в режиме Live View. Но и риск неточной фокусировки возрастает, ведь используется не матрица, а вспомогательный датчик.

Canon описал систему, которая использует фазовый автофокус на начальном этапе, а затем тонко подстраивает фокусировку при помощи контрастного автофокуса.

Nikon кажется, подал заявку на патентование принципа, когда определенные пиксели матрицы фотоаппарата будут использоваться в качестве датчиков фазового автофокуса. Это – по-моему – будет просто революцией.

FujiFilm уже выпустил линейку компактных цифровых фотоаппаратов с гибридной системой автофокуса.

Поживем, увидим. Но очевидно, что впервые за последние годы изменения систем автофокуса могут быть революционным, а не эволюционными. Что – согласитесь – таит для фотолюбителей много интересного и захватывающего.

Копипаст: http://www.vlador.com/info/просто-об-автофокусе/